Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin.

نویسندگان

  • Yi Cao
  • Hongbin Li
چکیده

The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanical properties of tenascin-X revealed by single-molecule force spectroscopy.

Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-...

متن کامل

The unfolding and folding dynamics of TNfnALL probed by single molecule force–ramp spectroscopy

Tenascin, an important extracellular matrix protein, is subject to stretching force under physiological conditions and plays important roles in regulating the cell–matrix interactions. Using the recently developed single molecule force–ramp spectroscopy, we investigated the unfolding– folding kinetics of a recombinant tenascin fragment TNfnALL. Our results showed that all the 15 FnIII domains i...

متن کامل

The mechanical hierarchies of fibronectin observed with single-molecule AFM.

Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanica...

متن کامل

Characterization of the bovine tenascin-X.

The primary structure of flexilin, an extracellular matrix glycoprotein previously identified in bovine tissues (Lethias, C., Descollonges, Y., Boutillon, M.-M., and Garrone, R. (1996) Matrix Biol. 15, 11-19) was determined by cDNA cloning. The deduced amino acid sequence (4135 residues) reveals that this protein is composed of a succession of peptide motifs characteristic of the tenascin famil...

متن کامل

Designing an extracellular matrix protein with enhanced mechanical stability.

The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 361 2  شماره 

صفحات  -

تاریخ انتشار 2006